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Abstract

An efficient computation of the periodic Helmholtz Green’s function for a 2D array of point sources using the Ewald
method is presented. Limitations on the numerical accuracy when using the ‘‘optimum’’ E parameter (which gives opti-
mum asymptotic convergence) at high frequency are discussed. A ‘‘best’’ E parameter is then derived to overcome these
limitations, which allows for the fastest convergence while maintaining a specific level of accuracy (loss of significant fig-
ures) in the final result. The actual loss of significant figures has been verified through numerical simulations. Formulas for
the number of terms needed for convergence have also been derived for both the spectral and the spatial series that appear
in the Ewald method and are found to be accurate in almost all cases.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

The calculation of the free-space periodic Green’s function (FSPGF) is an important problem in physics and
engineering [1–3] and the Ewald method [4–6] is a powerful means to efficiently evaluate the FSPGF. In the Ewald
method, the FSPGF is expressed as the sum of a modified ‘‘spectral’’ and a modified ‘‘spatial’’ series. The terms of
both series possess Gaussian decay, leading to an overall series representation that exhibits a very rapid conver-
gence rate. The convergence rate is optimum when the ‘‘optimum’’ value of the Ewald splitting parameter E is
used [5], denoted here as Eopt. However, one problem with the Ewald method is that at high frequency (when
the periodicity becomes large relative to a wavelength) the numerical accuracy degrades very quickly [6]. This
is due to a catastrophic loss of significant figures in the series summation, due to the fact that the (0,0) terms
in the two series (and to a lesser extent, other nearby terms) become very large and nearly opposite.

The method studied here limits the size of the largest terms in the series relative to that of the total Green’s
function by modifying the value of the parameter E to avoid undue loss of accuracy. By increasing the E

parameter, the size of the largest terms in the series is limited at the expense of slowing the convergence rate.
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Hence, there is a tradeoff between the size of the largest term allowed, which determines the number of sig-
nificant figures lost and the series convergence rate. A parameter EL is then obtained based on a user-defined
quantity L, which represents the tolerable loss of significant figures. This ‘‘best’’ value EL then yields the fastest
convergence of the Ewald series while limiting the loss of significant figures to the user-defined limit.

The spatial form of the FSPGF for a 2D periodic array on a general skewed lattice as shown in Fig. 1 is
given as (an ejxt, j ¼

ffiffiffiffiffiffiffi
�1
p

time dependence is assumed and suppressed)
Gðr; r0Þ ¼
X1

m¼�1

X1
n¼�1

e�jkt00�qmn
e�jkRmn

4pRmn

� �
; ð1Þ
where
Rmn ¼ jr� r0 � ms1 � ns2j;

where Rmn is the distance between the observation point at r = (x,y,z) and the (m,n)th periodic source point
located at r 0 + ms1 + ns2, kt00 ¼ x̂k sin h0 cos /0 þ ŷk sin h0 sin /0 is the transverse phasing wave-vector and
qmn = ms1 + ns2 is the position vector of the (m,n)th source point in the periodic lattice relative to the reference
source in the (0, 0) cell, denoted as r 0 = (x 0,y 0,z 0). The lattice vectors of the array are s1 and s2. Physically the
FSPGF is the time-harmonic scalar potential produced by an array of phased source points lying on the infi-
nite lattice at r 0 + ms1 + ns2.

When employing the Ewald method for the evaluation of the FSPGF, the Green’s function is expressed as a
sum of two series [4–6] so that
Gðr; r0Þ ¼ Gspectralðr; r0Þ þ Gspatialðr; r0Þ: ð2Þ

The spectral series Gspectral(r, r 0) is given by
Gspectralðr; r0Þ ¼
1

A

X1
p¼�1

X1
q¼�1

e�jktpq �ðq�q0Þ

4jkzpq
e�jkzpq jz�z0 jerfc

jkzpq

2E
� jz� z0jE

� �
þ ejkzpq jz�z0 jerfc

jkzpq

2E
þ jz� z0jE

� �� �
:

ð3Þ

The spatial series Gspatial(r, r 0) is given by
Gspatialðr; r0Þ ¼
X1

m¼�1

X1
n¼�1

e�jkt00�qmn

8pRmn
e�jkRmn erfc RmnE � jk

2E

� �
þ ejkRmn erfc RmnE þ jk

2E

� �� �
: ð4Þ
In these equations,
A = js1 · s2j cross sectional area of each lattice cell with edge vectors s1, s2,
ktpq transverse wave-vector of the (p,q)th mode,

kzpq

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � k2

tpq

q
, where k ¼ 2p

k ,

q, q 0 projections of the source and observation points onto the x–y plane,
r, r 0 position vectors for the observation and source points.
x

y

(x, y)

(x′, y′)

s1

s2

Fig. 1. A periodic lattice of source points [4] is shown with the observation point at (x,y,z).
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2. Splitting parameter (E)
As can be seen from the above formulae, the spectral and spatial series are written in terms of a comple-
mentary error function involving a ‘‘splitting’’ parameter E. The parameter E controls the convergence rate of
the two series. A larger E makes the spatial series Gspatial converge faster while a smaller E makes the spectral
series Gspectral converge faster. The splitting parameter E is an arbitrary number and its ‘‘optimum value’’ Eopt

is used to balance the asymptotic convergence rate between these two series [5]. It can be shown that this has
the effect of minimizing the total number of terms needed in the calculation of the Green’s function. The
‘‘optimum’’ E parameter [5] that results in the same asymptotic rate of decay for the Gspectral and Gspatial series
is
Eopt ¼
ffiffiffi
p
A

r
: ð5Þ
(The above formula was misprinted in the original article [5], where the p factor was mistakenly taken outside
of the square root.) With this choice of E, the rate of exponential decay is the same for both series, and also the
coefficients in front of the (m,n) = (p,q) terms in the two series are asymptotically equal. It can be shown that
this leads to the minimum overall number of terms needed for the calculation of the two Ewald series [5], and
is thus normally the best choice.

However, numerical difficulties are encountered when the lattice separations (periods) becomes large rela-
tive to a wavelength. This happens because for large arguments, the complementary error function erfc(z) is
approximately e�z2

=ð
ffiffiffi
p
p

zÞ [7]. For large lattice spacings relative to a wavelength, the imaginary part of the
argument of erfc becomes large. The first several terms of both the spatial and the spectral series thus have
very large values, and each series converges to very large, nearly equal but oppositely signed values. The
two series essentially cancel each other, resulting in a sum of moderate value but often with a catastrophic loss
of significant figures. To avoid this problem, it is desirable to limit the size of the largest terms of both series.
This results in choosing an E value that is greater than the ‘‘optimum’’ value. By increasing E beyond the opti-
mum value, one obtains smaller values for the imaginary part of the argument of the complementary error
function. As a result, one avoids loss of accuracy in the addition of the two series and a more accurate result
for the total Green’s function is obtained [6], at the expense of slower convergence.

In the following sections, a formula for the best E, called EL, which achieves the best convergence under the
constraint of limiting the loss of significant figures to L digits, is obtained for the general non-planar case
(z 6¼ z 0). This value of E is the smallest value beyond the optimum value that is still large enough to limit
to loss of significant figures to L digits.
3. Choice of the splitting parameter

The goal is to limit the size of the largest terms relative to the value of the total Green’s function. The larg-
est term in each series arises from the (0, 0) terms. We choose the value of E = EL by enforcing the following
conditions:
jG00;spectralj < a10LjGj ð6Þ
and
jG00;spatialj < a10LjGj; ð7Þ
where G is the value (or estimate) of the FSPGF and the parameter L indicates (roughly) how many significant
figures one is willing to sacrifice in the calculation.

The factor a on the RHS should be chosen as 1/2 for a worst-case error bound, assuming that the error is
equal in the two terms on the LHS of (6) and (7). If one of the terms is much larger than the other (when using
E = EL), a factor of a = 1 is more appropriate. This turns out to be the case, as will be demonstrated later;
hence, a factor of a = 1 is used here. Roughly speaking, the magnitude of the overall Green’s function is
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jGj � 1

4pR00

: ð8Þ
This approximation is a reasonable order-of-magnitude estimate unless the distance between the source and
observation points becomes comparable to the distance between the source point and the boundary of the unit
cell (so that image terms are important).

Consider first the Gspectral (modified spectral) series. Using the asymptotic form of the complementary error
function [5] at high frequency and defining Dz = jz � z 0j, we have
1

4Ajkz00

ffiffiffi
p
p e

�
kz00
2E

�2

�ðDzEÞ2 1
jkz00

2E � DzE
þ 1

jkz00

2E þ DzE

" #					
					 < 10L

4pR00

: ð9Þ
By solving the above equation for E, we obtain the restriction that
E > Espect ¼
kz00

2x1

; ð10Þ
where x1 satisfies the transcendental equation
x2
1 �

A1

x1

� �2

¼ ln F 1ðx1Þ; ð11Þ
where
A1 ¼
kz00Dz

2
ð12Þ
with Dz = jz � z 0j, and
F 1ðx1Þ ¼
ca

x1

x2
1 þ

A1

x1

� �2
 !

ð13Þ
with
ca ¼
10Lkz00A
2
ffiffiffi
p
p

R00

: ð14Þ
The term Espect represents the minimum value of E that will satisfy Eq. (6). The solution to the transcendental
Eq. (11) can be easily obtained by a variety of standard methods. One method is iteration, using the iterative
formula
xiþ1
1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln F i

1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðln F i

1Þ
2 þ 4A2

1

q
2

vuut
ð15Þ
with
F i
1 ¼

ca

xi
1

xi2
1 þ

A1

xi
1

� �2
 !" #

: ð16Þ
Eq. (15) comes directly from applying the quadratic formula to (11). Typically only a few iterations are re-
quired for convergence when starting with the initial guess x0

1 ¼
ffiffiffiffiffiffiffiffiffi
ln ca

p
.

The analysis for the Gspatial series is similar. In this case we obtain
1

8pR00

ffiffiffi
p
p e

�
k

2E

�2

�ðR00EÞ2 1

R00E � jk
2E

þ 1

R00E þ jk
2E

" #					
					 < 10L

4pR00

: ð17Þ
Solving the above equation for E, we obtain the restriction that
E > Espat ¼
k

2x2

; ð18Þ
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where x2 is a solution of
x2
2 �

A2

x2

� �2

¼ ln F 2ðx2Þ; ð19Þ
where
F 2ðx2Þ ¼
cbx2

A2

x2
2 þ

A2

x2

� �2
 !

ð20Þ
with
A2 ¼
R00k

2
ð21Þ
and
cb ¼ 10L ffiffiffi
p
p

: ð22Þ

The term Espat represents the minimum value of E that will satisfy Eq. (7). An iterative formula for the solu-
tion of (19) is
xiþ1
2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln F i

2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðln F i

2Þ
2 þ 4A2

2

q
2

vuut
; ð23Þ
where
F i ¼ cb

A2

xi
2 xi2

2 þ
A2

xi
2

� �2
 !" #

: ð24Þ
Convergence is usually rapid when starting with the initial guess x0
2 ¼

ffiffiffiffiffiffiffiffiffi
ln cb

p
.

The best overall splitting parameter is then given by
EL ¼ max Eopt;
kz00

2x1

;
k

2x2

� �
: ð25Þ
This value is the smallest value of E beyond the optimum value (and thus corresponds to the minimum num-
ber of total terms required in the Ewald summation) that will still ensure that the largest terms in both the
spectral and the spatial series are limited to the required level to avoid losing more than L significant figures
when the two series are added together.

4. Number of terms needed for convergence

Having determined the ‘‘best’’ value of the E parameter EL as a function of frequency, our next goal is to
determine how many terms are needed for convergence. We recall that a given value of L has been assumed,
which is the number of significant figures that are sacrificed in the calculation. For a given value of E = EL, we
next wish to determine how many terms in each series are needed to guarantee convergence of the Green’s
function to S significant figures. A method is developed here to calculate the summation limits P and Q for
the spectral series and M and N for the spatial series. If the machine precision is T significant figures, the value
of S that is specified should be limited to S < T � L.

As before, the overall magnitude of the Green’s function is approximated as in (8). First, consider the sum-
mation limits for M and P. For the two series, we require that
jGspatial;ðMþ1;0Þj þ jGspatial;ð�M�1;0Þj þ jGspatial;ð0;Nþ1Þj þ jGspatial;ð0;�N�1Þj < 10�S jGj 1

2

� �
ð26Þ
and
jGspectral;ðPþ1;0Þj þ jGspectral;ð�P�1;0Þj þ jGspectral;ð0;Qþ1Þj þ jGspectral;ð0;�Q�1Þj < 10�S jGj 1

2

� �
: ð27Þ
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The error in stopping the summations has been approximated in the above equations by the sum of the four
values that give the largest contributions outside the rectangle of summed values. The 1/2 factors on the right-
hand sides are present because the error in each series is limited to 1/2 the total error. It is next assumed that
the contributions from the first two terms on the LHS of (26) are roughly equal, and similarly for the third and
fourth terms. The error from the first two terms is limited to 1/2 the total (from all four terms) in (26), and
similarly for (27). This yields the four equations
jGspatial;ðMþ1;0Þj < 10�S jGj 1

8

� �
; ð28Þ

jGspatial;ð0;Nþ1Þj < 10�S jGj 1

8

� �
; ð29Þ

jGspectral;ðPþ1;0Þj < 10�S jGj 1

8

� �
; ð30Þ

jGspectral;ð0;Qþ1Þj < 10�SjGj 1

8

� �
: ð31Þ
First, consider the Gspatial series. Using the asymptotic approximation for the complementary error function
for the (m,n) term, we have, with either (m,n) = (M + 1,0) or (m,n) = (0,N + 1),
1

8pRmn
ffiffiffi
p
p

� �
e� ðRmnEÞ2� k

2Eð Þ2
� �

2RmnE

ðRmnEÞ2 þ k
2E

� �2

2
4

3
5

						
						 < 10�S 1

4pR00

� �
1

8

� �
: ð32Þ
Denote
x3 ¼ RmnE ð33Þ

and
F ¼ k
2E

; ð34Þ
where F is a normalized frequency term. Then the above equation reduces to the form
e�ðx
2
3
�F 2Þ

x2
3 þ F 2

					
					 < c3; ð35Þ
where
c3 ¼ 10�S

ffiffiffi
p
p

R00E

� �
1

8

� �
b: ð36Þ
The factor of b has been introduced as an adjustment factor. Using b = 1 corresponds directly to the solution
of (32) and usually represents a worst-case error bound. However, a factor of b = 4 was found to work well in
almost all cases. Hence, based on this observation,
c3 ¼ 10�S

ffiffiffi
p
p

R00E

� �
1

2

� �
: ð37Þ
Solving (35) for x3 results in
x3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D� F 2

p
; ð38Þ
where D satisfies
e�D

D
¼ W ð39Þ
with W ¼ c3e�2F 2
(the details are shown in the Appendix). The transcendental Eq. (39) can be solved using any

standard method. An iterative method is discussed in the Appendix. We then have the criterion
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Rmn >
x3

E
ð40Þ
or
jms1 þ ns2 � rþ r0j > x3

E
: ð41Þ
The summation limits are denoted as M and N, where �M 6 m 6M and �N 6 n 6 N. In determining the
limits, we impose the condition that the convergence criterion be reached for both m = M + 1 and n = 0
and also for m = 0 and n = N + 1. The above equation can be solved for the general skewed case, although
the result is unwieldy. Specializing to the rectangular case for simplicity (s1 ¼ x̂a and s2 ¼ ŷb), we obtain
the summation limits M and N as
M ¼ Int
x� x0

a
þ 1

a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x3

E


 �2

� ðy � y0Þ2 � ðz� z0Þ2
r !

ð42Þ
and
N ¼ Int
y � y0

b
þ 1

b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x3

E


 �2

� ðx� x0Þ2 � ðz� z0Þ2
r !

; ð43Þ
where a and b are the lattice dimensions in the x and y directions, respectively, and Int(x) denotes the integer
part of x.

Next consider the Gspectral series, with either (p,q) = (P + 1,0) or (p,q) = (0,Q + 1). The asymptotic approx-
imation of the complementary error function yields the result
1

4
ffiffiffi
p
p

Aapq

� �
e�

apq
2Eð Þ

2
þðEDzÞ2

� �
1

apq

2E � EDz
þ 1

apq

2E þ EDz

� �				
				 < 10�S 1

4pR00

� �
1

8

� �
; ð44Þ
where
apq ¼ jkzpq ð45Þ

and
Dz ¼ jz� z0j: ð46Þ

If we denote
x4 ¼
apq

2E
ð47Þ
and
ZE ¼ EDz ¼ Ejz� z0j; ð48Þ

where ZE is a normalized vertical displacement term, then the above equation reduces to the form
e�ðx
2
4
þZ2

EÞ

x2
4 � Z2

E

					
					 < c4; ð49Þ
where
c4 ¼ 10�S 1ffiffiffi
p
p
� �

EA
R00

� �
1

8

� �
b: ð50Þ
As in the spatial case, the adjustment factor b is taken to be 4, and hence
c4 ¼ 10�S 1ffiffiffi
p
p
� �

EA
R00

� �
1

2

� �
: ð51Þ
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Solving the above expression for x4, we obtain the following (see the Appendix):
x4 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dþ Z2

E

q
; ð52Þ
where D satisfies (39) with W ¼ c4e2Z2
E . We then require that
apq > 2Ex4 ð53Þ

or
jktpqj >
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ ð2Ex4Þ2

q
: ð54Þ
The transverse wavenumber is given by
ktpq ¼
2p
A

� �
½�pðẑ� s2Þ þ qðẑ� s1Þ� þ kt00: ð55Þ
The summation limits are denoted as P and Q, where �P 6 p 6 P and �Q 6 q 6 Q. In determining the limits,
we impose that the convergence criterion be reached for both p = P + 1 and q = 0 and also for p = 0 and
q = Q + 1. Solving for the summation limits P and Q for a rectangular lattice, we obtain
P ¼ Int � kx0a
2p
þ a

2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ ð2Ex4Þ2 � k2

y0

q� �
ð56Þ
and
Q ¼ Int � ky0b
2p
þ b

2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ ð2Ex4Þ2 � k2

x0

q� �
: ð57Þ
One note regarding Eqs. (42), (43) and (56), (57) should be made in connection with the square roots. Depend-
ing on the geometry of the problem and the specified convergence accuracy, it may occur that the argument of
one of the square roots is negative. This implies that the asymptotic analysis employed predicts that the nec-
essary value of the corresponding summation limit is less than zero. The lower limit must always be greater
than or equal to zero, however. Furthermore, since the analysis that predicts the summation limits is based
on asymptotic approximations, occasionally the analysis predicts a limit that is smaller than is actually re-
quired. This most commonly occurs when the prediction is for a limit of zero (for example, see the discussion
in connection with Table 5 below). To help avoid this problem, one strategy that can be implemented is to
always choose the summation limits (M,N,P,Q) to be equal to or larger than 1.

5. Results

The Ewald method involves the use of the complementary error function for the calculation of G. For val-
ues of L greater than 6 in our study, the Ewald method suffered from unpredictable round-off errors due to the
limitations on the accuracy of the complementary error function software used. Due to large magnitudes of
the arguments used in the complementary error function, errors were obtained from this in addition to the
errors resulting from cancellations. To avoid this problem, the loss of significant digits was limited to a max-
imum value of L = 6 in the study.

For all results, free-space conditions are assumed (k = k0 and k = k0). Results are shown for a square lattice
(a = b) with kx0 = ky0 = 0. Table 1 illustrates that the values of G00,spectral differ by many orders of magnitude
using Eopt and EL at different frequencies. For illustration, we take the number of significant digits lost to be
L = 3. Also shown in the table for convenience is Gpure,spectral, which is the numerically-exact Green’s function
calculated using a pure spectral method, namely
Gpure;spectðr; r0Þ ¼
1

A

X1
p¼�1

X1
q¼�1

1

2jkzpq
e�jktpq�ðq�q0Þe�jkzpqjz�z0 j: ð58Þ
Similarly, Table 2 illustrates that differences of many orders of magnitude exist between the values of G00,spatial

using Eopt and EL at different frequencies. Once again we take the number of lost significant digits to be L = 3.



Table 1
G00,spectral obtained using Eopt and EL, compared with Gpure,spectral, for a periodic cell of dimension a = b = 0.5 m with x = y = x 0 = y 0 = 0
and jz � z 0j = 0.05 m

a/k Eopt EL G00,spectral using Eopt G00,spectral using EL Gpure,spectral

10 3.5449 19.3974 5.46E+138 54.678 2.8541
5 3.5449 9.6349 1.23E+032 225.50 1.7847
4 3.5449 7.5821 2.27E+019 364.90 3.9148
3 3.5449 5.6205 1.31E+010 659.64 3.0937
2 3.5449 3.6945 4025.72 1537.3 3.9978
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Clearly, the value of EL is limiting the size of the (0,0) terms in each series, which is what results in more accu-
rate results due to less round-off error.

Next, Table 3 shows the values of G00,spectral and G00,spatial using EL for different values of L, keeping the
frequency fixed. It can be seen that the largest of the (0,0) terms, namely G00,spatial, has a magnitude that is on
the order of 10L times as large as the total Green’s function, as expected.

In Fig. 2, we consider the variation of EL with respect to the free-space wavelength for various parameters
L. We obtain a different curve of EL vs. free-space wavelength k for each L, and these curves are compared to
the fixed value Eopt, also included in the figure as a horizontal line.

To test the validity of our approach, we next consider some cases where we compare the values of L

obtained theoretically to the values of L obtained from the actual loss of significant figures, obtained numer-
ically. Ltheoretical is the input value of L used in the calculation of EL. The value Lactual is the value of L

obtained by using the same value of EL and comparing the value of the total Green’s function Gtot obtained
by the Ewald method with the pure-spectral Green’s function Gpure,spectral (assuming the pure spectral Green’s
function to be the accurate value, since this method, while slowly convergent, does not suffer from the same
loss-of-significance problem that the Ewald method does). Since the accuracy of the complementary error
function used in the program was always more than six significant figures [8], we deliberately contaminate
the (m,n) terms of the spectral and spatial series in the sixth decimal place using a random complex noise,
which ensures that the arithmetic is accurate to exactly six significant figures. We then obtain the value of
Lactual using the formula
Table
G00,spa

and jz
a/k

10
5
4
3
2

Table
G00,spe

freque

L

1
2
3
4
5
6

Lactual ¼ 6� log10

Gpure;spectral � Gtot

Gpure;spectral

				
				

				
				: ð59Þ
2

tial obtained using Eopt and EL compared with Gpure,spectral, for a periodic cell of dimension a = b = 0.5 m with x = y = x 0 = y 0 = 0
� z 0j = 0.05 m

Eopt EL G00,spatial using Eopt G00,spatial using EL Gpure,spectral

3.5449 19.3974 5.48E+138 1807.62 2.8541
3.5449 9.6349 1.24E+032 1866.28 1.7847
3.5449 7.5821 2.31E+019 1870.75 3.9148
3.5449 5.6205 1.36E+010 1869.78 3.0937
3.5449 3.6945 4437.39 1861.66 3.9978

3

ctral and G00,spatial for a periodic cell of dimensions a = b = 0.5 m with x = y = x0 = y 0 = 0 and jz � z 0j = 0.05 m, keeping the
ncy fixed such that a

k ¼ b
k ¼ 5

Eopt EL G00,spectral using EL G00,spatial using EL Gpure,spectral

3.5449 13.5192 1.14919 21.07691 1.7847
3.5449 11.0693 17.2311 196.7255 1.7847
3.5449 9.6348 225.499 1866.286 1.7847
3.5449 8.6632 2768.04 18053.94 1.7847
3.5449 7.9469 32707.6 176646.9 1.7847
3.5449 7.3894 376678.0 1739668.0 1.7847
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908 S. Oroskar et al. / Journal of Computational Physics 219 (2006) 899–911
Fig. 3 shows a typical result. We have a square lattice with sides a = 0.5 m, b = 0.5 m. The frequency is fixed at
3 GHz such that a

k ¼ b
k ¼ 5. The phasing wavevectors kx0 and ky0 are taken to be zero while the position of the

observation point is fixed at x = 0, y = 0 and jz � z 0j = 0.05 m. Fig. 3 shows results for this case. It is seen that
the agreement between the actual and theoretical values of L is quite good.

If the number of significant digits desired for convergence Sspec is specified, then we can calculate the sum-
mation limits for the spectral series, Pcal and Qcal and the summation limits for the spatial series, Mcal and Ncal,
using the formulae derived previously for the limits of P, Q, M and N. These four values are then verified by
comparing their values with Pact, Qact, Mact and Nact obtained from numerical convergence studies. The term
Sact denotes the actual number of significant digits that the Ewald method has converged to, using the formula
Fig. 3.
x = y =
Sact ¼ �log10

Gpure;spectral � Gtot

Gpure;spectral

				
				; ð60Þ
where Gtot = Gspectral + Gspatial is the value obtained from the Ewald method after summing the two series
using Pcal, Qcal, Mcal and Ncal.

For the spectral and the spatial series, the adjustment factor b = 1 works in all cases but is excessively con-
servative as can be seen in Table 4. If we assume a factor of b = 4, as explained previously, we obtain Table 5.
The second row (Sspec = 2) indicates that the actual number of significant figures obtained is less than that
specified for this particular value of Sspec. The value b = 4 is used henceforth in the following results.
0
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A comparison between Ltheoretical and Lactual for different values of E for a = b = 0.5 m, a
k ¼ b

k ¼ 5, kx0 = ky0 = 0, x 0 = y 0 = z 0 = 0.0,
0, and jz � z 0j = 0.05 m.



Table 4
Sspec and Sact for a periodic cell of dimensions a = b = 0.5 m, with x = y = x 0 = y 0 = 0 and jz � z 0j = 0.05 m, keeping the frequency fixed
such that a

k ¼ b
k ¼ 0:5, using b = 1

Sspec Pcal, Qcal Pact, Qact Mcal, Ncal Mact, Nact Sact

1 0, 0 0, 0 0, 0 0, 0 1.49

2 1, 1 1, 1 1, 1 1, 1 6.15

3 1, 1 1, 1 1, 1 1, 1 6.15

4 1, 1 1, 1 1, 1 1, 1 6.15

5 1, 1 1, 1 1, 1 1, 1 6.15

Table 5
Sspec and Sact for a periodic cell of dimensions a = b = 0.5 m, with x = y = x 0 = y 0 = 0 and jz � z 0j = 0.05 m, keeping the frequency fixed
such that a

k ¼ b
k ¼ 0:5, using b = 4

Sspec Pcal, Qcal Pact, Qact Mcal, Ncal Mact, Nact Sact

1 0, 0 0, 0 0, 0 0, 0 1.49

2 0, 0 1, 1 0, 0 1, 1 1.49

3 1, 1 1, 1 1, 1 1, 1 6.15

4 1, 1 1, 1 1, 1 1, 1 6.15

5 1, 1 1, 1 1, 1 1, 1 6.15

Table 6
Sspec and Sact for a periodic cell of dimensions a = b = 0.5 m, with x = y = x 0 = y 0 = 0 and jz � z 0j = 0.05 m, keeping the frequency fixed
such that a

k ¼ b
k ¼ 5, using b = 4

Sspec Pcal, Qcal Pact, Qact Mcal, Ncal Mact, Nact Sact

1 5, 5 5, 5 0, 0 0, 0 3.19

2 5, 5 5, 5 0, 0 0, 0 3.19

3 5, 5 5, 5 0, 0 0, 0 3.19

4 6, 6 6, 6 0, 0 0, 0 5.88

5 6, 6 6, 6 0, 0 0, 0 5.88
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Table 6 shows a case for a higher frequency such that a
k ¼ b

k ¼ 5. Again, the other dimensions are kept the
same as in Table 5. The agreement between the actual and specified values of S is good, especially for larger
values of S, with Sact > Sspec in all cases.

The agreement between Sspec and Sact has also been tested for various other wavevectors, periodic cell sizes
and horizontal and vertical positions of the observation point, and good agreement has been found.

6. Conclusion

The Ewald method is a very efficient method for calculating the periodic free-space Green’s function, but
the method suffers from accuracy problems at high frequency, as noted in [6], due to a loss of significant figures
that occurs from a cancellation when adding the two series, spectral and spatial, that appear in the method.
The method proposed here determines the ‘‘best’’ value of the parameter E that appears in the method in order
to obtain the fastest convergence of the Ewald sum, while limiting the number of significant digits that are lost
to a specified level L. In particular, the method determines the ‘‘best’’ value E = EL that yields the fastest con-
vergence while limiting the size of the largest (0, 0) terms in the spatial and the spectral series relative to the
numerical value of the total Green’s function, so as to limit cancellation error. Although the overall conver-
gence is not as fast as when using the ‘‘optimum’’ value E = Eopt, the loss of significant digits is kept to a tol-
erable level. Many orders of magnitude difference obtained between the values of G00,spectral and G00,spatial

using Eopt and EL at high frequencies is evident. For higher frequencies, EL > Eopt. However EL = Eopt for
frequencies below a certain threshold that depends on L. For a fixed frequency, the value of EL increases
as L decreases. The predicted loss of significant digits is verified through numerical simulations and the results
illustrate the accuracy of the proposed formula.
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Approximate expressions for the summation limits required to achieve a specified convergence accuracy for
both the spectral as well as the spatial series have also been formulated and tested for different cases. The spec-
ified number of significant digits desired for convergence, Sspec, is compared with the actual number of signif-
icant digits that the series have converged to, Sact, and found to be in good agreement in almost all cases,
thereby validating the formulas.

Appendix

Consider the transcendental equation
e�ðx
2�K2Þ

x2 þ K2
¼ c:
For the spatial case,
x ¼ x3; K2 ¼ F 2; and c ¼ c3 ¼ 10�S

ffiffiffi
p
p

R00E

� �
1

2

� �
:

For the spectral case,
x ¼ x4; K2 ¼ �Z2
E and c ¼ c4 ¼ 10�S 1ffiffiffi

p
p
� �

EA
R00

� �
1

2

� �
:

The transcendental equation is rewritten as
e�x2

eK2 ¼ cx2 þ cK2:
Let A ¼ ce�K2
and B ¼ ce�K2

K2. Then the above equation reduces to
e�x2 ¼ Ax2 þ B:
Denoting C ¼ B
A, we obtain
e�x2 ¼ Aðx2 þ CÞ:

Let
ðx2 þ CÞ ¼ D:
Hence, x2 = D � C and
e�DeC ¼ AD
or
e�D

D
¼ W ;
where W ¼ ce�2K2
.

Three cases are considered:

Case 1: W 6 0.36.
Taking logarithms on both sides, we have
�D� ln D ¼ ln W :
For the first iteration, we start with
D0 ¼ � ln W :
The iterative solution to this equation is
Diþ1 ¼ � ln Di � ln W :
It has been found numerically that this iteration converges when W 6 0.36.
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Case 2: W P 0.38
For this case we use
D ¼ 1

W
e�D:
For the first iteration, we start with
D0 ¼ 1

W
:

The iterative solution is then
Diþ1 ¼ 1

W
e�Di

:

It has been found numerically that this iteration converges when W P 0.38.

Case 3: 0.36 < W < 0.38.
In this ‘‘iterative-failure’’ region neither iterative method converges, However, by numerical solution, we

obtain the approximate value of D = 0.997.
As W approaches the limiting values of 0.36 or 0.38, the number of iterations needed increases significantly.

As a remedy, the solution of (39) for values within a particular region surrounding the iterative-failure region,
e.g., 0.3 < W < 0.5, may be computed and stored in a look-up table.
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